Support of this research by the National Science Foundation (GP-38022X) and Vanderbilt University is gratefully acknowledged.

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157-165.
Cullen, D. L. \& Lingafelter, E. C. (1971). Inorg. Chem. 10, 1264-1268.
Harrowfield, B. V., Dempster, A. J., Freeman, T. E. \& Pilbrow, J. R. (1973). J. Phys. (C): Solid State Phys. 6, 2058-2065.
Harrowfield, B. V. \& Pilbrow, J. R. (1973). J. Phys. (C): Solid State Phys. 6, 755-766.
Joesten, M. D., Takagi, S. \& Venable, J. H. (1975). Chem. Phys. Lett. 36, 536-538.
Lenhert, P. G. (1975). J. Appl. Cryst. 8, 568-570.

Miller, P. T., Lenhert, P. G. \& Joesten, M. D. (1972). Inorg. Chem. 11, 2221-2227.
Reinen, D., Friebel, C. \& Reetz, K. P. (1972). J. Solid State Chem. 4, 103-114.
Takagi, S., Joesten, M. D. \& Lenhert, P. G. (1975a). J. Amer. Chem. Soc. 97, 444-445.
Takagi, S., Joesten, M. D. \& Lenhert, P. G. (1975b). Acta Cryst. B31, 596-598.
Takagi, S., Joesten, M. D. \& Lenhert, P. G. (1975c). Acta Cryst. B31, 1968-1970.
Takagi, S., Joesten, M. D. \& Lenhert, P. G. (1975d). Acta Cryst. B31, 1970-1972.
Takagi, S., Joesten, M. D. \& Lenhert, P. G. (1975e). Unpublished results.
Takagi, S., Joesten, M. D. \& Lenhert, P. G. (1976). Acta Cryst. B32, 326-328.
Takagi, S., Lenhert, P. G. \& Joesten, M. D. (1974). J. Amer. Chem. Soc. 96, 6606-6609.

Tetraaquobis(succinimidato)nickel(II) Dihydrate

By Hector J. Cumming and David Hall
Chemistry Department, University of Auckland, New Zealand

(Received 24 November 1975; accepted 5 December 1975)

Abstract

Orthorhombic, Pnnm, $a=8.6580$ (8), $b=$ $7 \cdot 1118$ (8), $c=12 \cdot 522$ (1) $\AA, \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Ni} .6 \mathrm{H}_{2} \mathrm{O}, Z=2$, $D_{m}=1.57, D_{c}=1.563 \mathrm{~g} \mathrm{~cm}^{-3}$. Two of the coordinated water molecules form intramolecular hydrogen bonds to the carbonyl O atoms, whereas the other two are involved with water of crystallization in intermolecular bonding.

Introduction. Pale blue prismatic crystals were prepared as previously described (Ley \& Werner, 1906). Mean weight loss on heating, 29.7%; calculated for $6 \mathrm{H}_{2} \mathrm{O}$ per molecule of complex, $29 \cdot 8 \%$. Data were collected using a Hilger-Watts automated diffractometer, Mo $K \alpha$ radiation, to a 0 limit of 33°, giving a set of 481 observed data. Systematic absences were in $h k 0$ when

$h+k$ odd, $0 k l$ when $k+l$ odd. Space group Pnnm was assumed, and no feature of the structure gave cause to doubt it. The Ni atom position was fixed by symmetry, and all non-hydrogen atoms were readily placed from the heavy-atom phased density synthesis. H atoms were subsequently located from difference syntheses. Refinement was by full-matrix least squares, minimizing $\sum w\left(F_{o}-F_{c}\right)^{2}$, with weights based on the relationship $\sigma(I)=\left[\sigma^{2}(c)+(0 \cdot 04 I)^{2}\right]^{1 / 2}$ where $\sigma^{2}(c)$ is the variance from counting statistics. Anisotropic thermal parameters were adopted, except for the H atoms which were given a constant isotropic parameter of $5.0 \AA^{2}$. The final R was $0 \cdot 043$. A final difference synthesis confirmed that no atom had been overlooked. Atom coordinates and thermal parameters are listed in Table 1,

Table 1. Atomic coordinates and temperature factors

	x	y	z	B or B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Ni	0	0	0	$0 \cdot 0089$ (2)	$0 \cdot 0180$ (3)	0.0033 (1)	$-0 \cdot 0005$	0	0
N	0	0	$0 \cdot 1679$ (3)	$0 \cdot 0082$ (6)	0.017 (1)	0.0028 (3)	$-0.0000(20)$	0	0
0	$0 \cdot 2565$ (4)	-0.0555 (6)	$0 \cdot 1974$ (3)	$0 \cdot 0099$ (5)	0.037 (1)	$0 \cdot 0042$ (2)	$0 \cdot 0018$ (7)	-0.0010	-0.0014 (4)
C(1)	$0 \cdot 1257$ (6)	-0.0270 (9)	$0 \cdot 2317$ (3)	$0 \cdot 0111$ (7)	0.019 (2)	$0 \cdot 0036$ (2)	-0.0011 (9)	-0.0000	0.0007 (6)
C(2)	0.0853 (7)	-0.0165 (14)	$0 \cdot 3484$ (3)	$0 \cdot 0152$ (8)	0.029 (2)	0.0029 (2)	$0 \cdot 0004$ (17)	-0.0008 (4)	$0 \cdot 0012$ (8)
$\mathrm{O}(W 1)$	$0 \cdot 2332$ (7)	0.0898 (9)	0	$0 \cdot 0105$ (8)	0.024 (2)	$0 \cdot 0056$ (4)	-0.0048 (9)	0	0
$\mathrm{O}(W 2)$	-0.0820 (7)	$0 \cdot 2712$ (7)	0	$0 \cdot 0132$ (8)	0.015 (1)	0.0040 (3)	-0.0014 (8)	0	0
$\mathrm{O}(W 3)$	0	$0 \cdot 5$	$0 \cdot 1685$ (3)	$0 \cdot 0105$ (6)	0.023 (1)	$0 \cdot 0035$ (3)	$0 \cdot 0010$ (17)	0	0
$\mathrm{H}(\mathrm{Cl})$	$0 \cdot 120$ (7)	-0.137 (9)	$0 \cdot 392$ (4)	$5 \cdot 0$					
$\mathrm{H}(\mathrm{C} 2)$	$0 \cdot 164$ (7)	0.076 (8)	$0 \cdot 386$ (4)	$5 \cdot 0$					
$\mathrm{H}(W 1)$	0.272 (7)	0.036 (9)	$0 \cdot 053$ (4)	$5 \cdot 0$					
$\mathbf{H}(W 2)$	0.452 (6)	$0 \cdot 149$ (8)	$0 \cdot 441$ (4)	$5 \cdot 0$					
$\mathrm{H}(W 3)$	0.085 (6)	$0 \cdot 464$ (9)	$0 \cdot 200$ (4)	$5 \cdot 0$					

Table 2. Interatomic distances and angles

$\mathrm{Ni}-\mathrm{N}$	$2 \cdot 102$ (2) \AA
$\mathrm{Ni}-\mathrm{O}(W 1)$	$2 \cdot 118$ (5)
$\mathrm{Ni}-\mathrm{O}(W 2)$	2.055 (5)
$\mathrm{N}-\mathrm{C}(1)$	$1 \cdot 364$ (6)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 505$ (8)
C(1)-O	$1 \cdot 228$ (6)
$\mathrm{C}(2)-\mathrm{C}(2)^{\prime}$	1.496 (8)
$\mathrm{O}(1) \cdots \mathrm{O}(W 1)$	2.686 (6)
$\mathrm{O}(1) \cdots \mathrm{O}(W 3)$	2.724 (4)
$\mathrm{O}(W 3) \cdots \mathrm{O}(W 2)$	2.758 (5)
$\mathrm{O}(W 1)-\mathrm{Ni}-\mathrm{O}(W 2)$	92.7 (2) ${ }^{\circ}$
$\mathrm{Ni}-\mathrm{N}-\mathrm{C}(1)$	$125 \cdot 9$ (2)
$\mathrm{N}-\mathrm{C}(1)-\mathrm{O}$	123.7 (5)
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	112.2 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(1)^{\prime}$	$103 \cdot 7$ (5)
$\mathrm{O}(W 1)-\mathrm{H}(W 1) \cdots \mathrm{O}(1)$	$150 \cdot 7$ (5)
$\mathrm{O}(W 2)-\mathrm{H}(W 2) \cdots \mathrm{O}(W 3)$	$176 \cdot 1$ (6)
$\mathrm{O}(W 3)-\mathrm{H}(W 3) \cdots \mathrm{O}(1)$	$160 \cdot 1$ (6)

bond lengths and angles in Table 2.* The complex molecule and the hydrogen-bonding scheme are depicted in Fig. 1.

Discussion. The crystal structure of the hexahydrate of N, N^{\prime}-bis-(2-salicylideneaminoethyl)ethylenediaminenickel(II) (Cradwick, Cradwick, Dodson, Hall \& Waters, 1972) showed an unexpected structural feature in that the water molecules form linear columns which can be described in terms of stacked decahedra, these being akin to the pentagonal dodecahedra that form the unit of clathrate hydrate structures, but with square basal faces. One water molecule in three forms a donor hydrogen bond to a phenolic O of the ligand but otherwise the water structure and the hexadentate complex are independent structural units. Hydrates of metal compounds are not commonly of interest for the water structure per se, the water molecules usually being associated with the cation or anion, but the above result suggested that neutral chelates of high hydration number could be of unsuspected structural interest. In this context it was noted that bis(succinimidato)nickel(II) is reported to form an octahydrate, from which six of the water molecules are much easier to remove than the other two (Ley \& Werner, 1906), suggesting that these six may not be coordinated to the metal. In fact this report proved not to be correct; the compound is a hexahydrate, with four of the six molecules coordinated to the Ni atom, and while the hydrogen-bonding scheme is of interest it is not of a novel type.

The complex molecule, which has required point group symmetry $C_{2 h}$, is shown in Fig. 1. Bond lengths and angles are normal, and with regard to the succinimidato ligand, are remarkably similar to those of succinimide itself (Mason, 1961). The atoms of the ligand (other than the H atoms) and the Ni atom are coplanar within error. The Ni-O bonds to the two

[^0]| $\mathrm{C}(2)-\mathrm{H}(\mathrm{C} 1)$ | $1.06(6) \AA$ |
| :--- | :--- |
| $\mathrm{C}(2)-\mathrm{H}(\mathrm{C} 2)$ | $1.06(6)$ |
| $\mathrm{O}(W 1)-\mathrm{H}(W 1)$ | $0.83(6)$ |
| $\mathrm{O}(W 2)-\mathrm{H}(W 2)$ | $0.96(5)$ |
| $\mathrm{O}(W 3)-\mathrm{H}(W 3)$ | $0.87(6)$ |
| | |
| | |
| $\mathrm{O}(1) \cdots \mathrm{H}(W 1)$ | $1.93(6)$ |
| $\mathrm{O}(1) \cdots \mathrm{H}(W 3)$ | $1.89(6)$ |
| $\mathrm{O}(W 3) \cdots \mathrm{H}(W 2)$ | $1.78(5)$ |
| $\mathrm{H}(\mathrm{C} 1)-\mathrm{C}(2)-\mathrm{H}(\mathrm{C} 2)$ | $90(4)^{\circ}$ |
| $\mathrm{H}(\mathrm{C} 1)-\mathrm{C}(2)-\mathrm{C}(1)$ | $113(3)$ |
| $\mathrm{H}(\mathrm{C} 1)-\mathrm{C}(2)-\mathrm{C}(2)^{\prime}$ | $114(3)$ |
| $\mathrm{H}(\mathrm{C} 2)-\mathrm{C}(2)-\mathrm{C}(1)$ | $108(3)$ |
| $\mathrm{H}(\mathrm{C} 2)-\mathrm{C}(2)-\mathrm{C}(2)^{\prime}$ | $123(3)$ |
| $\mathrm{H}(W 1)-\mathrm{O}(1)-\mathrm{H}(W 1)^{\prime}$ | $105(8)$ |
| $\mathrm{H}(W 2)-\mathrm{O}(2)-\mathrm{H}(W 2)^{\prime}$ | $98(4)$ |
| $\mathrm{H}(W 3)-\mathrm{O}(3)-\mathrm{H}(W 3)^{\prime}$ | $127(8)$ |
| | |

Fig. 1. The tetraaquobis(succinimidato)nickel(II) molecule, and the hydrogen-bonding scheme.
crystallographically distinct, coordinated water molecules differ significantly in length, and these two molecules have quite different hydrogen bonding roles. Molecule 1 is involved only in intramolecular hydrogen bonds to the carbonyl O atoms, and these bonds determine the conformation of the molecule, with regard to the rotation of the ligand about the $\mathrm{Ni}-\mathrm{N}$ bond. Molecule 2 is involved in the intermolecular bonding scheme, forming donor hydrogen bonds to the molecules of water of crystallization. For their part these
water molecules are each involved in such linkages with two different complex molecules, and as well form donor linkages to a carbonyl O of two further complex molecules. Each complex molecule is thus involved in eight extramolecular hydrogen bonds, the carbonyl O atoms each being involved in one intraand one intermolecular bond.

References

Cradwick, P. D., Cradwick, M. E., Dodson, G. G., Hall, D. \& Waters, T. N. (1972). Acta Cryst. B28, 45-49.
Ley, H. \& Werner, F. (1906). Ber. dtsch. chem. Ges. 39, 2177-2180.
Mason, R. (1961). Acta Cryst. 14, 720-724.

Acta Cryst. (1976). B32, 1283

The Monoclinic Form of \boldsymbol{p}-Hydroxyacetanilide

By Masao Haisa, Setsuo Kashino, Ryoichi Kawai and Hironobu Maeda
Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan

(Received 16 September 1975; accepted 10 December 1975)

Abstract

HO}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHCOCH}_{3}\), m.p. $168-170^{\circ} \mathrm{C}$, monoclinic, $P 2_{1} / a, a=12.93$ (4), $b=9.40$ (1), $c=$ $7 \cdot 10$ (2) $\AA, \beta=115 \cdot 9$ (2) ${ }^{\circ} . D_{m}=1 \cdot 30, D_{x}=1.296 \mathrm{~g} \mathrm{~cm}^{-3}$, $Z=4$. The structure was refined to $R=0.072$ for 1382 non-zero reflexions. The molecules are linked together by two kinds of hydrogen bonds [2.663 (3) \AA, OH donates to $\mathrm{O}=\mathrm{C} ; 2.934$ (3) \AA, OH accepts from $\mathrm{H}-\mathrm{N}$] to form a pleated sheet parallel to the $a c$ plane and the sheets are stacked along \mathbf{b}. The dihedral angle between the benzene ring and the amide group is $21 \cdot 2^{\circ}$. The structure is compared with that of the orthorhombic form.

Introduction. The monoclinic crystals obtained from an aqueous solution were prisms elongated along c. Intensity data were collected on Weissenberg photographs with specimens $0.3 \times 0.3 \times 0.6 \mathrm{~mm}$ for the layers $h k 0$ to $h k 5$, and $0.4 \times 0.6 \times 0.2 \mathrm{~mm}$ for the layers $h 0 l$ to $h 7 l$. Visually estimated intensities were corrected for Lorentz and polarization factors and for spot shape, but no absorption correction was made $[\mu(\mathrm{Cu} K \alpha)=$ $8.0 \mathrm{~cm}^{-1}$].

Intensities of 1382 non-zero reflexions (78% of the reflexions within $\mathrm{Cu} K \alpha$ sphere) were placed on an ap-
proximately absolute scale by a Wilson plot ($B=3 \cdot 19$ \AA^{2}).
The structure was solved from a Patterson map. Block-diagonal least-squares refinement reduced R from 0.35 to 0.11 . A difference Fourier synthesis revealed the H atoms except for those of the methyl group. Further refinement including the H atoms reduced R to $0 \cdot 092$. After correction for extinction for the six strongest reflexions, a difference Fourier synthesis revealed all the H atoms. Refinement including all the atoms gave a final R value of 0.072 for 1382 non-zero reflexions.* The weights adopted were $w=1.0$ for $0<\left|F_{o}\right| \leq 7.0$ and $w=\left(7.0 /\left|F_{o}\right|\right)^{2}$ for $\left|F_{o}\right|>7.0$. The atomic scattering factors were taken from International Tables for X-ray Crystallography (1962). The computations were performed on an NEAC 2200-500 computer at the Okayama University Computer Center. The programs used were $H B L S-5$ and DAPH (Ashida, 1973).

[^1]Table 1. The final positional and thermal parameters $\left(\times 10^{4}\right)$ with standard deviations in parentheses
The anisotropic temperature factors have the form $\exp \left[-\beta_{11} h^{2}-\beta_{22} k^{2}-\beta_{33} l^{2}-\beta_{12} h k-\beta_{13} h l-\beta_{23} k l\right]$.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
O(1)	2228 (2)	851 (2)	560 (3)	70 (1)	138 (3)	233 (5)	72 (3)	151 (4)	94 (6)
$\mathrm{O}(2)$	-1923 (2)	4977 (2)	-5458 (3)	69 (1)	168 (3)	170 (4)	3 (3)	83 (4)	47 (6)
N	-1599 (2)	4436 (2)	-2145 (3)	52 (1)	86 (2)	173 (5)	4 (3)	84 (4)	17 (5)
C(1)	-611 (2)	3547 (2)	-1519 (3)	44 (1)	68 (2)	164 (5)	-16 (3)	58 (4)	-9 (5)
C(2)	142 (2)	3562 (2)	-2442 (4)	57 (2)	82 (3)	178 (5)	-15 (3)	91 (5)	21 (6)
C(3)	1089 (2)	2656 (3)	-1721 (4)	56 (2)	101 (3)	206 (6)	-9 (4)	131 (5)	-2 (7)
C(4)	1290 (2)	1740 (3)	-69 (4)	51 (2)	86 (3)	183 (5)	-4 (3)	92 (5)	-13 (6)
C(5)	551 (2)	1744 (3)	887 (4)	62 (2)	103 (3)	215 (6)	21 (4)	116 (6)	90 (7)
C(6)	-387 (2)	2641 (3)	160 (4)	55 (2)	106 (3)	216 (6)	9 (4)	126 (5)	59 (7)
C(7)	-2196 (2)	5067 (2)	-4003 (4)	55 (2)	79 (3)	163 (5)	-23(3)	58 (5)	1 (6)
C(8)	-3233 (3)	5896 (3)	-4176 (4)	75 (2)	119 (3)	233 (7)	46 (5)	66 (6)	33 (8)

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31555 (3 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 1 INZ, England.

[^1]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31567 (6 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

